Корреляционный (взаимосвязанный) метод |
|
Корреляционный (взаимосвязанный) метод является одним из экономико-математических методов исследования, позволяющим определить количественную взаимосвязь между несколькими параметрами исследуемой системы. При этом корреляционная зависимость в отличие от функциональной может проявляться только в общем, среднем случае, то есть в массе случаев - наблюдений. Первоначальной важнейшей задачей корреляционного метода является определение вида корреляционного уравнения (уравнения регрессии). Простейшим видом такого уравнения, характеризующим взаимосвязь между двумя параметрами, может быть уравнение прямой У = а + в Х, где Х, У - соответственно независимая и зависимая переменные; а, в - постоянные коэффициенты. Вывод о прямолинейном характере зависимости можно проверить путем простого сопоставления имеющихся данных или графическим способом (регистрацией в прямоугольной системе координат значений У и Х, расположение которых на графике позволяет сделать вывод о правильности или ошибочности представления о линейном характере зависимости между двумя изучаемыми параметрами). Следующей задачей является определение постоянных коэффициентов связи между переменными параметрами, которые наилучшим образом будут отвечать имеющимся фактическим данным У и Х. В данном случае можно в качестве критерия оценки адекватности линейной зависимости фактическим данным использовать минимум суммы квадратов отклонений реальных статистических значений У от рассчитанных по уравнению принятой к применению прямой. Коэффициенты прямой при использовании данного критерия могут быть определены известным методом наименьших квадратов. Примером линейной зависимости можно признать количество заместителей начальника У функционального отдела от числа работников Х в отделе и на основе статистических данных (для данного примера, как правило, не менее 20-25 пар) получить следующую зависимость У = О,600 + 0,206 Х. Величина исследуемого параметра довольно часто складывается под влиянием не одного, а нескольких факторов. В этом случае, например, при линейной связи всех факторов можно использовать линейное уравнение множественной корреляции следующего вида У = а 0+а1Х1+а 2Х 2 +...+а нХ н. Если же воздействие какого-либо фактора на исследуемый объект не может быть признано линейным, то соответствующие факторы могут включаться в уравнение не в первой, а в более высокой степени, например, во второй: У = а 0+а1Х1+а 2Х2+а 3Х 23. Корреляционные методы, особенно при множественной корреляции параметров, эффективно используются, как правило, в совокупности с другими экономико-математическими методами. Новые экономические отношения и качественно иная система менеджмента требуют использования более современных методов анализа и проектирования систем. К одному из таких методов следует отнести метод ФСА, который, как показывают исследования, способен быть адекватным современным требованиям при проведении исследовательских работ по совершенствованию. В любом случае, независимо от используемого конкретного метода, наибольший эффект и объективность исследовательских работ может быть достигнута комплексным применением приемлемых для целей исследования СУ методов. При этом одни из них могут быть эффективны на одном этапе исследования, а другие - на ином. И. Acтaшкинa, B. Mишин Исследование систем управления, подробнее...
|
Обратная связь
Поиск по сайту Все расположенные на сервере материалы являются собственностью их авторов. Любое воспроизведение, копирование с целью коммерческого использования этих материалов должно согласовываться с авторами материалов.
|