Центр Креативных Технологий

Структурирование (развертывание) функции качества

Интеллект Клуб

10.12.2001

Структурирование (развертывание) функции качества

Цитата из статьи:

Для разработки исходных требований к новой продукции применяется новый метод маркетинга, называемый Структурированием Функции Качества (СФК, в английском оригинале - Quality Function Deployment). Этот метод был разработан в Японии и до недавнего времени был засекречен от американцев и европейцев больше, чем любое конкретное know-how. На русском языке этот метод пока описан только в нескольких публикациях журнала "Автомобильная Промышленность США" и в специальной подборке журнала "Курс на Качество", где переведена серия как раз тех статей, которые были исходными для ознакомления с этим методом и началом его развития в США и Западной Европе. К сожалению, в России этот метод пока что весьма мало известен и, естественно, не используется.

Что век грядущий нам готовит?
(Менеджмент 21 века - краткий обзор основных тенденций)
Адлер Ю.П., Аронов И.З., Шпер В.Л.

* * *

Надо сказать, что в России не используется даже то, что известно, например, функционально-стоимостный анализ, приносящий США ежегодно сотни миллионов долларов экономии. Большинство наших промышленных предприятий решает другую задачу - где взять деньги (смысловой акцент на слове ВЗЯТЬ). Что же касается упомянутого метода СФК, то сейчас публикаций о нем существенно прибавилось. Написано много, но все сплошная вода. Понятно лишь одно - это метод перевода качественных оценок продукции с позиции потребителя в количественные оценки с позиции производителя. Конкретное изложение процедур метода, и как его применить к конкретному изделию, вы не найдете. По всей видимости, японцы продолжают хранить свою государственную тайну. Оно и понятно, такой инструмент дает принципиальное превосходство над конкурентами в вопросах правильного выбора направлений создания новых продуктов, развития техники и технологий.

К этому вопросу я еще вернусь, а сейчас несколько примеров из области развития техники.

Возможно, вы знаете, что такое микрография. Для тех, кто не знает - это технология получения микроизображений на микропленке или микрофише. Где-то в середине 80-х годов это направление считалось основным для создания, так называемых, страховых архивов. Книги, газеты, журнала, патенты и т. п. снимались фотокамерами с высоким разрешением с уменьшением в 21-24 раза на микрофиши. Микрофиши проявлялись в проявочных машинах, с оригиналов изготавливались копии микрофиш на диазопленках. Для получения изображений микрофиш использовались специальные проекторы - читальные аппараты. Таким образом создавались архивы, которые позволяли хранить информацию и получать доступ к различным архивным материалам.

Развивалась эта техника в то время довольно бурно. Альтернатив ей видно не было, хотя недостатков было много. Прежде всего, был достигнут предел в разрешающей способности оптики. А это значило, что получить принципиально более высокую плотность хранения информации не удастся. На втором месте, на мой взгляд, был недостаток, связанный с поиском информации. Автоматизация этого процесса представлялась крайне сложной и дорогой. Были и другие недостатки. Пленка с аналоговым микроизображением слишком чувствительна к механическим повреждениям. Даже мелкие царапины существенно ухудшали качество изображения. Процесс копирование и размножение микрофиш имел сравнительно низкую производительность. Читальные аппараты были громоздкими, потребляли много электроэнергии, нагревали пленку, что снижало срок ее службы. Перспектива развития этой области техники виделась в создании новых видов оптической записи информации. Но рассматривалось это направление в основном в рамках существующих для микрофильмирования технологий. Компьютерную технику в то время в качестве реальной альтернативы микрографии не рассматривали.

Действительно, тогда для широких пользователей был доступен персональный компьютер на основе 286 процессора со всеми сопутствующими возможностями такого компьютера. И даже, когда основные характеристики персональных компьютеров увеличились в сотни и тысячи раз, все равно, их не рассматривали, как конкурентов микрографии, поскольку магнитные носители не отвечали требованиям надежности по хранению информации. Сокрушительный удар по микрографии был нанесен, когда в компьютерах стали использоваться устройства оптической записи информации на компакт дисках. Это был тот самый альтернативный оптический носитель информации, который отвечал требованиям надежности. Конечно, микрография в принципе не умерла, но сферы ее использования сократились многократно.

Подобных примеров исчезновения когда-то широко используемых устройств и технологий множество. Достаточно вспомнить виниловые диски с аналоговой записью звука и проигрыватели с контактными звукоснимателями для их проигрывания. Подобная судьба ожидает и аудиокассеты с магнитной пленкой. Очевидно, их место займут цифровые аудио устройства, работающие на основе mp3- форматов и их разновидностей. За ними очередь наступит магнитных видеокассет и аппаратуры для них. Отживает свой век аналоговый телевизор.

Все эти примеры показывают торжество цифровых технологий над аналоговыми.

В свое время в ТРИЗ были сформулированы законы развития технических систем. С ними можно ознакомиться, например, на нашем сайте в разделе ТРИЗ. Так вот, современная тенденция перехода от аналоговых систем к цифровым явно претендует на еще один, если не закон, то на закономерность развития техники.

Но есть и другие примеры. Примеры долголетия, а может и бессмертия технических систем. Взять, к примеру, обыкновенную стеклянную бутылку. Сколько ей лет? И умирать эта система, похоже, не собирается, хотя недостатков у нее немало (большой вес, материалоемкость, чувствительность к ударам). Альтернативных "бутылок" появилось много, но вытеснить стеклянную винную бутылку им не под силу.

Кому пример с бутылкой показался не очень убедительным, то можно привести другой пример - это книга. Вот уж где недостатка в конкурентах нет. Тем не менее, книга живет и здравствует, и не побоюсь предположить, что будет жить вечно, как и бутылка.

А если и этих примеров мало, то вспомним задачу, которую я привел в прошлом выпуске. Речь там шла о зингеровской челночной швейной машине, которая сшивает ткани, так называемым челночным стежком. Сколько лет швейной машине "Зингер"? Точно не знаю, но не меньше 100. И что, за сто лет так никому и не удалось придумать ничего лучшего? Нет, не удалось. Челночный стежок до сих пор остается основным технологическим способом скрепления тканей и получения относительно неэластичного и не распускающегося шва.

Современные промышленные швейные машины - это сложнейшие устройства, в которых сочетаются достижения точной механики и электроники. Скорость шитья таких машин достигает 100 стежков с секунду. Современная промышленная швейная машина по своей сложности не уступает автомобилю. А внутри у нее все тот же зингеровский челнок. Недостатков у него множество. Верхняя нить, транспортируемая сквозь ткань иглой, для образования стежка должна каждый раз огибать челнок. Для этого постоянно вытягивается и затягивается ниточная петля, в которую этот челнок должен пролезть. Вот и представьте себе, как должен быть сделан механизм подачи нити, чтобы нить при таких скоростях не рвалась и не изнашивала металлические детали. Получается, что надо уменьшать размер челнока. Чем меньше челнок, тем меньше огибающая его петля, и тем меньше нагрузка на нить. Но слишком маленький челнок тоже плохо. В челноке расположена нижняя нить. Если челнок слишком мал, то нижняя нитка будет быстро заканчиваться. Придется часто перезаряжать челнок. Из-за этого будет снижаться производительность, а это основной показатель промышленной швейной машины. Поэтому челнок имеет допустимо большой размер, при котором верхняя нить еще способна выдерживать нагрузки.

Решение проблемы увеличения прочности нити тоже не осталась без внимания. Технологии ее изготовления постоянно совершенствуются.

Но это еще не все "прелести" швейной машины. Все верхние и нижние механизмы машины (механизм движения иглы, подачи верхней нити, продвижения ткани, движения челнока) должны быть жестко и точно синхронизированы. В результате мы имеем механического монстра с тысячами деталей сложнейшей формы и высочайшей точности изготовления. Кроме того, все движущиеся механизмы, а движутся они с частотой до 100 Гц, должны быть идеально сбалансированы. Иначе машина будет стучать, вибрировать, и очень быстро разбалансируется и развалится.

Так в чем же дело? Почему одни технические системы стремительно развиваются, а другие практически остановились в своем развитии. Может быть, существуют такие решения, которые невозможно принципиально улучшить? А если это так, то хорошо бы знать это заранее, чтобы не тратить время и деньги на подобные бесплодные попытки.

Теперь можно вернуться к вопросу, с которого начинается это выпуск.

Именно эту задачу (определение наиболее эффективных направлений развития), а также другие задачи оценки качества должен решать секретный японский метод СФК. Не знаю (и очевидно, мало кто знает), как эту задачу решили Японцы, но мы ее в степени пригодной для практического использования, решили достаточно давно. Об этом в следующем выпуске.

Вас же, уважаемые члены Интеллект-Клуба, хотел бы попросить высказать свои соображения по поводу столь отличающихся темпов развития различных технических систем.

До следующей встречи.

Александр Барышников
Обратная связь

Другие публикации